Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Can J Cardiol ; 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20236553

ABSTRACT

BACKGROUND: Patients with Multisystem Inflammatory Syndrome in Children (MIS-C) and Kawasaki disease (KD) have overlapping clinical features. We compared demographics/clinical presentation, management, and outcomes of patients by evidence of prior SARS-CoV-2 infection. METHODS: The International KD Registry (IKDR) enrolled KD and MIS-C patients from sites from North, Central and South America, Europe, Asia and Middle East. Evidence of prior infection was defined as: Positive (+ve household contact or positive PCR/serology), Possible (suggestive clinical features of MIS-C and/or KD with negative PCR or serology but not both), Negative (negative PCR and serology and no known exposure), and Unknown (incomplete testing and no known exposure). RESULTS: Of 2345 enrolled patients SARS-CoV-2 status was Positive for 1541 (66%) patients, Possible 89 (4%), Negative 404 (17%) and Unknown for 311 (13%) patients. Clinical outcomes varied significantly between the groups, with more patients in the Positive/Possible groups presenting with shock, having admission to Intensive Care, receiving inotropic support, and having longer hospital stays. Regarding cardiac abnormalities, patients in the Positive/Possible groups had a higher prevalence of left ventricular dysfunction, while patients in the Negative and Unknown groups had more severe coronary artery abnormalities. results CONCLUSION: : There appears to be a spectrum of clinical features from MIS-C to KD with a great deal of heterogeneity, and one primary differentiating factor is evidence for prior acute SARS CoV2 infection/exposure. SARS-CoV-2 Positive/Possible patients had more severe presentations and required more intensive management, with a greater likelihood of ventricular dysfunction but less severe coronary artery adverse outcomes, in keeping with MIS-C.

2.
Pediatr Cardiol ; 44(6): 1373-1381, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2241896

ABSTRACT

To determine clinical differences for children with complete Kawasaki disease (KD) with and without evidence of preceding SARS-CoV-2 infection. From January 2020, contemporaneous patients with complete KD criteria were classified as either SARS-CoV-2 positive (KDCOVID+; confirmed household exposure, positive PCR and/or serology) or SARS-CoV-2 negative (KDCOVID-; negative testing and no exposure) and compared. Of 744 patients in the International Kawasaki Disease Registry, 52 were KDCOVID- and 61 were KDCOVID+. KDCOVID+ patients were older (median 5.5 vs. 3.7 years; p < 0.001), and all additionally met diagnostic criteria for multisystem inflammatory syndrome in children (MIS-C). They were more likely to have abdominal pain (60% vs. 35%; p = 0.008) and headache (38% vs. 10%; p < 0.001) and had significantly higher CRP, troponin, and BUN/creatinine, and lower hemoglobin, platelets, and lymphocytes. KDCOVID+ patients were more likely to have shock (41% vs. 6%; p < 0.001), ICU admission (62% vs. 10%; p < 0.001), lower left ventricular ejection fraction (mean lowest LVEF 53% vs. 60%; p < 0.001), and to have received inotropic support (60% vs. 10%; p < 0.001). Both groups received IVIG (2 doses in 22% vs. 18%; p = 0.63), but KDCOVID+ were more likely to have received steroids (85% vs. 35%; p < 0.001) and anakinra (60% vs. 10%; p = 0.002). KDCOVID- patients were more likely to have medium/large coronary artery aneurysms (CAA, 12% vs. 0%; p = 0.01). KDCOVID+ patients differ from KDCOVID-, have more severe disease, and greater evidence of myocardial involvement and cardiovascular dysfunction rather than CAA. These patients may be a distinct KD phenotype in the presence of a prevalent specific trigger.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Humans , SARS-CoV-2 , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Stroke Volume , Ventricular Function, Left , Systemic Inflammatory Response Syndrome , Registries
4.
J Virol ; 96(8): e0012822, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1765079

ABSTRACT

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Furin/metabolism , HeLa Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
5.
Nutrients ; 13(4)2021 Apr 14.
Article in English | MEDLINE | ID: covidwho-1187014

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for one of the worst pandemics in modern history. Several prevention and treatment strategies have been designed and evaluated in recent months either through the repurposing of existing treatments or the development of new drugs and vaccines. In this study, we show that L-carnitine tartrate supplementation in humans and rodents led to significant decreases of key host dependency factors, notably angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and Furin, which are responsible for viral attachment, viral spike S-protein cleavage, and priming for viral fusion and entry. Interestingly, pre-treatment of Calu-3, human lung epithelial cells, with L-carnitine tartrate led to a significant and dose-dependent inhibition of the infection by SARS-CoV-2. Infection inhibition coincided with a significant decrease in ACE2 mRNA expression levels. These data suggest that L-carnitine tartrate should be tested with appropriate trials in humans for the possibility to limit SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Carnitine/administration & dosage , Tartrates/administration & dosage , Adult , Aged , Angiotensin-Converting Enzyme 2/blood , Animals , COVID-19/metabolism , Carnitine/pharmacology , Cell Line , Cell Survival/drug effects , Female , Furin/blood , Furin/metabolism , Humans , Inflammation/metabolism , Male , Middle Aged , Rats , SARS-CoV-2 , Serine Endopeptidases/blood , Serine Endopeptidases/metabolism , Tartrates/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL